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J .  Phys.: Condens. Matter 3 (1991) 2867-2%72. Printed in the UK 

Electron scattering by mobile defects 

A I Morosov and A S Sigov 
Institute of Radioengineenng, Electronics and Automation, 117454 Moscow, USSR 

Received 16 October 1989 

Abstract. We consider the infrareddivergencescausedby the electroninteraction withmass 
density waves (MDW) in the presence of strong static disorder localizing the states of the 
defects. The temperature dependence of the MDW contribution to the electrical resistance is 
obtained. The minimum resistance evoked by the electron-MDw scattering is found. 

1. Introduction 

It is generally known that light interstitials in a metal matrix (e.g. hydrogen isotopes or 
positive muons) can diffuse from one interstice into another. Tunnelling is the main 
diffusion mechanism in the low temperature region (Andreev and Lifshitz 1969). If the 
free path length A of the quantum impurity (MDW) is much greater than the interatomic 
distance, a, the impurity is described by the Bloch eigenfunction, and the characteristic 
band width eo for hydrogen in a metal, taking account of the polaron effect, equals 
0.1/10 K (Wipf and Neumaier 1984, Fukai and Sugimoto 1985). For low temperature 
the value of A is mainly determined by the MDW scattering from electrons, static imper- 
fections and each other. 

Otherwise, if A <a,  the  moves by hopping between interstices. 
In a previous paper (Morosovand Sigov 1987) weconsidered the influenceofinfrared 

(IR) divergences caused by the electron-Mow interaction on the resistance of metals in 
the case A %- a for non-interacting MDWs. 

In the present paper we investigate the case of a ‘strong’ static disorder when the 
MDW band is destroyed due to the influence of lattice defects, and all the states are 
localized. 

2. The electron-Mow interaction 

The complete Hamiltonian of the electron-MDw interaction may be introduced in the 
form 

3e = XI + %.fMDW + %., (1) 
where 

= E E(k)a+ (k)a(k)  (2) 
X 
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+ c VL?),(k - k')n+(k)a(k')c+(n)c(n) 
k.X'.n 

V;ob,(k - k') = (nlVo(,k - k')e'(p-')R In'). (5 )  

The Hamiltonian %e, describes the conductivity electrons, e ( k )  is the dispersion law 
for the electrons and a*(,k). a(k)  are the second quantization operators. The MDW 
Hamiltonian XMoW reflects the static disorder, W(n)  is the MDw energy at the nth 
interstice (n is the 3~ integer vector), f is the tunnelling matrix element, 6 runs over the 
nearest neighbours and c*(n)  and c(n) are the MDWsecond-quantization operators. The 
Hamiltonian X,,, describes the interaction between electrons and the MDW, V,(k)  is the 
Fourier component of the interaction potential. In) is the *function of the MDW at the 
nth interstice defined in the coordinate space. Here and below. the MDW at an interstice 
is supposed to occupy the lowest oscillation level. 

In the absence of the disorder (W(n)  = Wn) all interstices are equivalent and XMOW 
takes a diagonal form in the Bloch-function representation. In such a case one has 

The matrix element of X,nL for the transition between state& with different Bloch 
functionsdoes not contain thesmall parameter rand the complcte vertexof the electron- 
MDW interaction V(q)  equals (Kondo 1984a. b) 

V(q)  = vO(d(D/max(eo, T)Ip (7) 

where D is the electron band width. Tis temperature. andgis defined (see Morosov and 
Sigov 1987) as 

the integration is performed over the Fermi surface. 

and to narrowing of the MDW band width (Kondo 1984a, b): 
The electron-Mow interaction leads to renormalization of the MOW dispersion law 

eo = eO(max(eo, T ) / D ) ~  K - g. (9) 

At the same time there exists the following estimation for the renormalized effective 
MDW band width (Kagan and Prokofev 1986) 

io = E,,(max(T, F ~ ) / W ) ~  (10) 

uhere wisthefrequencyoflocal  vibrationat at theinterstice,ande,,istheMoW band 
width in the adiabatic approximation. An apparent disagreement between formulae (9) 
and (10) is connected with the difference in the initial expression for the band width: E , )  
corresponds to the MDW neglecting its interaction with electrons, while the interaction 
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Figure 1. Figure 2. 

with electrons whose energy exceeds w is already taken into account within the scope of 
the adiabatic approximation. This remark allows us to find (Leggett et a i  1987) that 

E*,j = E O ( W / D ) K .  (11) 

Therefore, expressions (9) and (10) are equivalent in the framework of the parquet 
approximation (Nozieres et all969. Morosov and Sigov 1987). Substitution of gofor 
in the expression max(T, so) yields transformation of Kinto K/(1 - K )  for T < E" which 
isgreater than the accuracy of the parquet approximation. 

3. Strong disorder 

Let us consider the case when the dispersion of the MDW energy at neighbouring inter- 
stices caused by lattice imperfections (dislocations, heavy point defects) considerably 
exceeds E ~ :  

E = (IW(n) - W(n + 6)i) % Eo (12) 

where the symbol (. . .) denotes averaging over n and S .  At the same time we suppose 
that E < D and the conductivity electrons are delocalized and described by the Bloch 
functions. 

In this case, the eigenstates of the Hamiltonian YeMDW are localized and the integral 
intersection of the wave functions of states centred at neighbouring interstices containing 
the small parameter t / E .  Thus. the main contribution to IR divergencies comes from the 
term in Ye,,, that is diagonal with respect ton. Indeed, let us examine the quadratic in 
V,?i, correction to the MDW Green function 

vf'. = [is, - W(n) + f ] - ' .  (13) 

Here W(n)  is the eigenvalue of the Hamiltonian YeHDW, f is the MDW chemical 
potential, and E, = (2m + l ) n T ,  where m = 0, +1, +2.. . ._ The diagram in figure 1 
corresponds to this correction term. The broken line represents the function 
Y!,:~(E,), the wavy line denotes Viyh,, and the full curve is the electron Green function 

G(O)(k, E,) = [is, - ~ ( k )  + p ] - '  (14) 
where p is the chemical potential of electrons. The contribution of terms with n' = n + 6 
to the self-energy part of MDW, X = , ~ ( E ~ ) ,  contains the square of the matrix element 
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(4 
Figure 3. 

VinL+8 - f/~andtheIogarithmicdivergenceiscutoffatmax(&,,, T,g).HenceforES E~ 

the term with n' = n is much greater than the others. Neglecting them, one finds 

(15) 
Y","(E) = %%E)(T/W 

V"."(E) = V!2(E)(D/T)X 
where Y","(E) and V n , n ( ~ )  are the resultsof analytic extrapolation of the corresponding 
expressions from points E = iEm to the real axis. 

4. MDW contribution to the resistance 

When the MDWS are described by the Bloch waves, the diagram displayed in figure 2(a) 
does not contribute to the relaxation of electrons and gives rise to renormalization of p 
only. The situation changes drastically in the case of localized MDWS. The process 
displayedinfigure2(a) leadstoachangeintheelectronmomentum. Ifthemdivergencies 
are accounted for, one has to replace Y!,oL by Y"," and VioL(q) by V.,,(q) (figure 2(b)). 
The double broken circle and the full triangle with a wavy line correspond to the elements 
Yn,,and Vn,"(9), respectively. Renormalizationsofthevertexandof the Green function 
cancel each other. Therefore, the contribution described by this diagram has the form 

(16) G(~) (P.  E , ) G ' ~ ) W .  E,) E v;ob(p - pf)f(n) ei(p-p*)R 
n 

wheref(n) is the Fermi-Dirac function for the MDW distribution between the eigenstates 
of the Hamiltonian YeMDW. It can be easily seen that equation (16) with the exception of 
the factor f(n) coincides with the analogous expression for the scattering of electrons 
from frozen-in defects in the 'cross' technique (Abricosov eta1 1963). In the latter case 
the summation is performed over the impurities. 

If one neglects the interaction between the MDWS (since their concentration is low) 
and assumes the absence of correlation between the deviations of @(n) from its mean 
value, then the averaging over the realizations of staticdisorder is completely analogous 
to that in the 'cross' technique. As a result, in the framework of our approximation, one 
obtains a general diagram (figure 3(a ) )  for a full contribution of diagrams of this type to 
the relaxation of electrons. All MDW loops within the chain curve correspond to the same 
14. 

The secondcontribution to the electron relaxation time re, comes from the processes 
introduced in figure 3(b) .  and is analogous to that considered by Morosov and Sigov 



Electron scattering by mobile defects 2871 

Figure 4. Temperature dependence of the MDW 
contribution to the resisrance of the disordered 
crystal. 
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(1987). In addition to elastic processes, when both MDW lines in the loop correspond to 
the same n, the relaxation of electrons is influenced by the inelastic processes, for which 
n’ # n. The contribution of the latter processes is smaller by the parameter (E&)’. 
Neglecting it we obtain the foIlowing expression for z,, 

where the integration is performed over the Fermi surface. The expression for zel 
becomes very simple when the value V m J q )  is independent of n.  Then one finds 

where to is the electron relaxation time in the case of scattering from the ‘frozen-in’ 
impurities of identical chemical nature and equal concentration x .  

Considering the two-particle Green function we have (analogously) for the MDW 
contribution into the resistance 

P = p0x-l c U’(,) + [f(n) - f’(n)l(T/W} 
R 

where p o  is the residual resistance in the case of the ‘frozen-in’ impurities. 
In the region of high temperature,f(n) appears to be so small that 

Xf’O e Z : f ( n ) ( T / w .  
n /r 

Then one obtains 

P(T)  = PO(T/W (21) 

as in the case of the absence of the diagonal disorder (Morosov and Sigov 1987). This is 
evidence for the universality of such a dependence on temperature. Because of the 
absence of a p(T) dependence upon c0 we have no crossover to the ‘cross’ technique in 
the limit 0. In the ‘cross’ technique one considers impurities as the external field, 
but here we treat them as internal degrees of freedom of the crystal. With increasing 
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impurity mass (diminishing c0) there is an exponentially increasing MDW system relax- 
ation time, rMDW. Its value equals (Kagan and Prokofev 1986) 

A I Morosov and A S Sigou 

GI'Dw = (g @,/E) exp(-E/T).  (22) 

Hence heavy impurities are practically always in the non-equilibrium 'frozen-in' state. 
Withdecreasingtemperatureat T = Ti theinequality(20)changesitssign. At T <  T ,  

the value of p(7')  increases with decreasing temperature. This process continues down 
to the temperature Tzof degeneration of the MDW gas. At T C  Tz the resistancep = p,,. 
The characteristic temperature dependence of the MDW contribution to the resistance is 
introduced in figure 4. The values of T1 and Tz  depend upon the character of the MDW 
density of states v ( W ( n ) ) .  

5. Conclusions 

We found the contribution to the electrical resistance of crystals of scattering from the 
MDW. Unlike in thc case of the 'frozen-in' impurities in which residual resistance remains 
constant, the MDW contribution in the case of 'strong' static disorder appears to be non- 
monotonic and the resistance displays a minimum at T =  T I .  At higher temperatures 
one has p ( T )  i~ Tg, thercfore the index of the temperature dependence is non-universal 
and reflects specific properties of agiven material. 
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